Real-Time Rendering Architectures

Mike Houston, AMD
Part 1: throughput processing

• Three key concepts behind how modern GPU processing cores run code

• Knowing these concepts will help you:
 1. Understand space of GPU core (and throughput CPU core) designs
 2. Optimize shaders/compute kernels
 3. Establish intuition: what workloads might benefit from the design of these architectures?
What’s in a GPU?

A GPU is a heterogeneous chip multi-processor (highly tuned for graphics)
A diffuse reflectance shader

```cpp
sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;

float4 diffuseShader(float3 norm, float2 uv)
{
    float3 kd;
    kd = myTex.Sample(mySamp, uv);
    kd *= clamp( dot(lightDir, norm), 0.0, 1.0);
    return float4(kd, 1.0);
}
```

Shader programming model:

Fragments are processed independently, but there is no explicit parallel programming
Compile shader

1 unshaded fragment input record

sampler mySamp;
Texture2D<float3> myTex;
float3 lightDir;

float4 diffuseShader(float3 norm, float2 uv)
{
 float3 kd;
 kd = myTex.Sample(mySamp, uv);
 kd *= clamp(dot(lightDir, norm), 0.0, 1.0);
 return float4(kd, 1.0);
}

<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)

1 shaded fragment output record
Execute shader

<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)
Execute shader

```
<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)
```
Execute shader

```
<diffuseShader):
sample r0, v4, t0, s0
mul  r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul  o0, r0, r3
mul  o1, r1, r3
mul  o2, r2, r3
mov  o3, l(1.0)
```
Execute shader

```glsl
<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)
```
Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Execute shader

Fetch/Decode

ALU (Execute)

Execution Context

<diffuseShader>:
 sample r0, v4, t0, s0
 mul r3, v0, cb0[0]
 madd r3, v1, cb0[1], r3
 madd r3, v2, cb0[2], r3
 clmp r3, r3, 1(0.0), 1(1.0)
 mul o0, r0, r3
 mul o1, r1, r3
 mul o2, r2, r3
 mov o3, 1(1.0)
Beyond Programmable Shading Course, ACM SIGGRAPH 2011

Execute shader

Fetch/Decode

ALU (Execute)

Execution Context

<diffuseShader>:
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)
Execute shader

<diffuseShader>:
 sample r0, v4, t0, s0
 mul r3, v0, cb0[0]
 madd r3, v1, cb0[1], r3
 madd r3, v2, cb0[2], r3
 clmp r3, r3, l(0.0), l(1.0)
 mul o0, r0, r3
 mul o1, r1, r3
 mul o2, r2, r3
 mov o3, l(1.0)
“CPU-style” cores

- Fetch/Decode
- ALU (Execute)
- Execution Context
- Data cache (a big one)
- Out-of-order control logic
- Fancy branch predictor
- Memory pre-fetcher
Slimming down

Idea #1:
Remove components that help a single instruction stream run fast
Two cores (two fragments in parallel)

```diffuseShader
    sample r0, v4, t0, s0
    mul r3, v0, cb0[0]
    madd r3, v1, cb0[1], r3
    madd r3, v2, cb0[2], r3
    clmp r3, r3, l(0.0), l(1.0)
    mul o0, r0, r3
    mul o1, r1, r3
    mul o2, r2, r3
    mov o3, l(1.0)
```

Fragment 1

```diffuseShader
    sample r0, v4, t0, s0
    mul r3, v0, cb0[0]
    madd r3, v1, cb0[1], r3
    madd r3, v2, cb0[2], r3
    clmp r3, r3, l(0.0), l(1.0)
    mul o0, r0, r3
    mul o1, r1, r3
    mul o2, r2, r3
    mov o3, l(1.0)
```

Fragment 2
Four cores (four fragments in parallel)
Sixteen cores (sixteen fragments in parallel)

16 cores = 16 simultaneous instruction streams
Instruction stream sharing

But ... many fragments should be able to share an instruction stream!

<diffuseShader>:

```
sample r0, v4, t0, s0
mul r3, v0, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, l(0.0), l(1.0)
mul o0, r0, r3
mul o1, r1, r3
mul o2, r2, r3
mov o3, l(1.0)
```
Recall: simple processing core

- Fetch/Decode
- ALU (Execute)
- Execution Context
Add ALUs

Idea #2:
Amortize cost/complexity of managing an instruction stream across many ALUs

SIMD processing
Modifying the shader

Original compiled shader:
Processes one fragment using scalar ops on scalar registers
Modifying the shader

New compiled shader:
Processes eight fragments using vector ops on vector registers

\[
\begin{align*}
\text{VEC8_diffuseShader}: &
\text{VEC8_sample vec}_r0, \text{vec}_v4, t0, \text{vec}_s0 \\
\text{VEC8_mul vec}_r3, \text{vec}_v0, \text{cb0}[0] \\
\text{VEC8_madd vec}_r3, \text{vec}_v1, \text{cb0}[1], \text{vec}_r3 \\
\text{VEC8_madd vec}_r3, \text{vec}_v2, \text{cb0}[2], \text{vec}_r3 \\
\text{VEC8_clmp vec}_r3, \text{vec}_r3, 1(0.0), 1(1.0) \\
\text{VEC8_mul vec}_o0, \text{vec}_r0, \text{vec}_r3 \\
\text{VEC8_mul vec}_o1, \text{vec}_r1, \text{vec}_r3 \\
\text{VEC8_mul vec}_o2, \text{vec}_r2, \text{vec}_r3 \\
\text{VEC8_mov o3}, 1(1.0)
\end{align*}
\]
Modifying the shader

<VEC8_diffuseShader>:

VEC8_sample vec_r0, vec_v4, t0, vec_s0
VEC8_mul vec_r3, vec_v0, cb0[0]
VEC8_madd vec_r3, vec_v1, cb0[1], vec_r3
VEC8_madd vec_r3, vec_v2, cb0[2], vec_r3
VEC8_clmp vec_r3, vec_r3, l(0.0), l(1.0)
VEC8_mul vec_o0, vec_r0, vec_r3
VEC8_mul vec_o1, vec_r1, vec_r3
VEC8_mul vec_o2, vec_r2, vec_r3
VEC8_mov o3, l(1.0)
128 fragments in parallel

16 cores = 128 ALUs

16 simultaneous instruction streams
128 [] in parallel

vertices/fragments
OpenCL work items

vertices

primitives

fragments
But what about branches?

```plaintext
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
} else {
    x = 0;
    refl = Ka;
}
```

<unconditional shader code>

<resume unconditional shader code>
But what about branches?

```
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
} else {
    x = 0;
    refl = Ka;
}
<resume unconditional shader code>
```
But what about branches?

Not all ALUs do useful work!
Worst case: 1/8 peak performance

```
if (x > 0) {
    y = pow(x, exp);
    y *= Ks;
    refl = y + Ka;
} else {
    x = 0;
    refl = Ka;
}
```

Worst case: 1/8 peak performance
But what about branches?

if (x > 0) {
 y = pow(x, exp);
 y *= Ks;
 refl = y + Ka;
} else {
 x = 0;
 refl = Ka;
}

<unconditional shader code>
<resume unconditional shader code>
Clarification

SIMD processing does not imply SIMD instructions

• Option 1: explicit vector instructions
 – x86 SSE, AVX, Intel Larrabee

• Option 2: scalar instructions, implicit HW vectorization
 – HW determines instruction stream sharing across ALUs (amount of sharing hidden from software)
 – NVIDIA GeForce (“SIMT” warps), ATI Radeon architectures (“wavefronts”)

In practice: 16 to 64 fragments share an instruction stream.
Stalls!

Stalls occur when a core cannot run the next instruction because of a dependency on a previous operation.

Texture access latency = 100’s to 1000’s of cycles

We’ve removed the fancy caches and logic that helps avoid stalls.
But we have **LOTS** of independent fragments.

Idea #3:
Interleave processing of many fragments on a single core to avoid stalls caused by high latency operations.
Hiding shader stalls

Time (clocks)

Frag 1 … 8

Fetch/Decode

ALU 1 ALU 2 ALU 3 ALU 4
ALU 5 ALU 6 ALU 7 ALU 8

Ctx Ctx Ctx Ctx
Ctx Ctx Ctx Ctx

Shared Ctx Data
Hiding shader stalls

Time (clocks)

Frag 1 … 8

Frag 9 … 16

Frag 17 … 24

Frag 25 … 32

ALU 1

ALU 2

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

ALU 8

Fetch/Decode
Hiding shader stalls

Time (clocks)

Frag 1 … 8

Frag 9 … 16

Frag 17 … 24

Frag 25 … 32

Runnable

Stall

Beyond Programmable Shading Course, ACM SIGGRAPH 2011
Hiding shader stalls

Time (clocks)

1. Frag 1 … 8

Runnable

2. Frag 9 … 16

Stall

3. Frag 17 … 24

Stall

4. Frag 25 … 32

Stall
Throughput!

Time (clocks)

Frag 1 … 8

Runnable

Done!

Frag 9 … 16

Runnable

Stall

Runnable

Done!

Frag 17 … 24

Runnable

Stall

Runnable

Done!

Frag 25 … 32

Runnable

Stall

Runnable

Increase run time of one group to increase throughput of many groups.
Storing contexts

Pool of context storage
128 KB
Eighteen small contexts (maximal latency hiding)
Twelve medium contexts
Four large contexts (low latency hiding ability)
Clarification

Interleaving between contexts can be managed by hardware or software (or both!)

- **NVIDIA / ATI Radeon GPUs**
 - HW schedules / manages all contexts (lots of them)
 - Special on-chip storage holds fragment state

- **Intel Larrabee**
 - HW manages four x86 (big) contexts at fine granularity
 - SW scheduling interleaves many groups of fragments on each HW context
 - L1-L2 cache holds fragment state (as determined by SW)
Example chip

16 cores

8 mul-add ALUs per core
(128 total)

16 simultaneous
instruction streams

64 concurrent (but interleaved)
instruction streams

512 concurrent fragments

= 256 GFLOPs (@ 1GHz)
Summary: three key ideas

1. Use many “slimmed down cores” to run in parallel

2. Pack cores full of ALUs (by sharing instruction stream across groups of fragments)
 – Option 1: Explicit SIMD vector instructions
 – Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution of many groups of fragments
 – When one group stalls, work on another group
Part 2:
Putting the three ideas into practice:
A closer look at real GPUs

NVIDIA GeForce GTX 580
ATI Radeon™ HD 6970
Disclaimer

• The following slides describe “a reasonable way to think” about the architecture of commercial GPUs

• Many factors play a role in actual chip performance
NVIDIA GeForce GTX 580 (Fermi)

• NVIDIA-speak:
 – 512 stream processors ("CUDA cores")
 – "SIMT execution"

• Generic speak:
 – 16 cores
 – 2 groups of 16 SIMD functional units per core
NVIDIA GeForce GTX 580 “core”

- Groups of 32 [fragments/vertices/CUDA threads] share an instruction stream
- Up to 48 groups are simultaneously interleaved
- Up to 1536 individual contexts can be stored

Source: Fermi Compute Architecture Whitepaper, CUDA Programming Guide 3.1, Appendix G
NVIDIA GeForce GTX 580 “core”

- The core contains 32 functional units
- Two groups are selected each clock (decode, fetch, and execute two instruction streams in parallel)

[Diagram showing the core's architecture]

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G
The SM contains 32 CUDA cores

Two warps are selected each clock (decode, fetch, and execute two warps in parallel)

Up to 48 warps are interleaved, totaling 1536 CUDA threads

Source: Fermi Compute Architecture Whitepaper
CUDA Programming Guide 3.1, Appendix G

Beyond Programmable Shading Course, ACM SIGGRAPH 2011
NVIDIA GeForce GTX 580

There are 16 of these things on the GTX 580:

That’s 24,500 fragments!
Or 24,500 OpenCL work-items!
ATI Radeon™ HD 6970 (Cayman)

• AMD-speak:
 – 1536 stream processors

• Generic speak:
 – 24 cores
 – 16 “beefy” SIMD functional units per core
 – 4 multiply-adds per functional unit (VLIW processing)
ATI Radeon™ HD 6970 “core”

Fetch/Decode

- Execution contexts (256 KB)
- “Shared” memory (32 KB)

Groups of 64 [fragments/vertices/etc.] share instruction stream

Four clocks to execute an instruction for all fragments in a group

![SIMD function unit, control shared across 16 units (Up to 4 MUL-ADDs per clock)]
ATI Radeon™ HD 6970 “SIMD-engine”

Groups of 64 [fragments/vertices/OpenCL work items] are in a “wavefront”.

Four clocks to execute an instruction for an entire wavefront

= stream processor, control shared across 16 units (Up to 4 MUL-ADDs per clock)
There are 24 of these “cores” on the 6970: that’s about 32,000 fragments!
The talk thus far: processing data

Part 3: moving data to processors
Recall: “CPU-style” core

- OOO exec logic
- Branch predictor
- Fetch/Decode
- ALU
- Execution Context
- Data cache (a big one)
“CPU-style” memory hierarchy

CPU cores run efficiently when data is resident in cache (caches reduce latency, provide high bandwidth)

- OOO exec logic
- Branch predictor
- Fetch/Decode
- ALU
- Execution contexts

- L1 cache (32 KB)
- L2 cache (256 KB)
- L3 cache (8 MB)

Shared across cores

25 GB/sec to memory
Throughput core (GPU-style)

More ALUs, no large traditional cache hierarchy:
Need high-bandwidth connection to memory
Bandwidth is a critical resource

- A high-end GPU (e.g. Radeon™ HD 6970) has…
 - Over **twenty times** (2.7 TFLOPS) the compute performance of quad-core CPU
 - No large cache hierarchy to absorb memory requests

- GPU memory system is designed for throughput
 - Wide bus (150 GB/sec)
 - Repack/reorder/interleave memory requests to maximize use of memory bus
 - Still, this is only **six times** the bandwidth available to CPU
Bandwidth thought experiment

Task: element-wise multiply two long vectors A and B

1. Load input $A[i]$
2. Load input $B[i]$
3. Load input $C[i]$
4. Compute $A[i] \times B[i] + C[i]$
5. Store result into $D[i]$

Four memory operations (16 bytes) for every MUL-ADD
Radeon HD 6970 can do 1536 MUL-ADDS per clock
Need ~20 TB/sec of bandwidth to keep functional units busy
Less than 1% efficiency… but 6x faster than CPU!
Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for GPU-compute application developers.
Reducing bandwidth requirements

• Request data less often (instead, do more math)
 – “arithmetic intensity”

• Fetch data from memory less often (share/reuse data across fragments)
 – on-chip communication or storage
Reducing bandwidth requirements

• Two examples of on-chip storage
 – Texture caches
 – OpenCL “local memory” (CUDA shared memory)

Texture caches:
Capture reuse across fragments, not temporal reuse within a single shader program
Modern GPU memory hierarchy

On-chip storage takes load off memory system. Many developers calling for more cache-like storage (particularly GPU-compute applications)
Don’t forget about offload cost…

• PCIe bandwidth/latency
 – 8GB/s each direction in practice
 – Attempt to pipeline/multi-buffer uploads and downloads

• Dispatch latency
 – O(10) usec to dispatch from CPU to the GPU
 – This means offload cost is O(10M) instructions
Heterogeneous cores to the rescue?

• Tighter integration of CPU and GPU style cores
 – Reduce offload cost
 – Reduce memory copies/transfers
 – Power management

• Industry shifting rapidly in this direction
 – AMD Fusion™ APUs
 – Intel SandyBridge
 – ...
AMD A-Series APU (“Llano”)
Others – GPUs not compute capable, yet

Intel Sandy Bridge

Nvidia Tegra 2